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On the Design of Novel Compact
Broad-Band Planar Filters
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Abstract—On the basis of impedance steps and coupled-line
sections as inverter circuits, novel wide-band and very compact
filters are presented. The application of alternately high- and
low-impedance lines presented to the connected transmission-line
resonators partly reduces their lengths to a quarter-wavelength
only. In addition, effective techniques are demonstrated to re-
duce spurious stopband resonance resulting from a remaining
half-wavelength resonator. Both suspended stripline (SSL) and
microstrip filters were designed, fabricated, and tested, proving
this concept in an excellent way. For the prototype filters, center
frequencies around 6 GHz were selected. Bandwidths are between
25-3.25 GHz, and insertion-loss amounts to around 0.25 dB
for the microstrip filters and 0.5 dB (including the transitions
to coaxial line) for the SSL filters, respectively. For the selected
center frequency and on a substrate with a dielectric constant of
10.8, the smallest microstrip filter isonly 15 mm x5 mm in size.

Index Terms—Broad-band planar bandpass filter, impedance
inverter circuits, multipole resonator.

|. INTRODUCTION

ODAY, broad-band and multiband applications are re-

newing the interest in the design of planar broad-band
filters with low-loss and improved stopband performance.
Recently, a coupling structure as shown in Fig. 1 has been
proposed and investigated as an inverter element for bandpass
filters[1]. With strong coupling and small size, this structureis
agood candidate for very compact and broad-band filter design.
It already provides one or two return-loss zeros, but its strong
frequency dependence prevents the application of state-of-the
art filter design procedures, and an extensive optimization
procedure is necessary. Furthermore, as will be shown later, the
symmetry of this structure, i.e., having the same widths of an
input and output line, is not very advantageous for an advanced
filter design.

In this paper, a modified approach for understanding the be-
havior of such a structure is presented, leading to an improved
filter synthesis and new concepts for the design of very com-
pact broad-band filters. According to the two-pole bandpass
response, the structure of Fig. 1 can equaly be decomposed
into three different discontinuities (two impedance steps and
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Fig. 1. Coupling/inverter structure and computed scattering parameters for
two different widths of the ground plane gap (from [1]).

a coupling section) and two transmission-line sections. Re-
garding the discontinuities as elementary impedance inverters,
and the transmission-line sections as quarter-wave resonators,
the whole structure, as described above, can alternatively
be interpreted as a two-resonator filter. In this case, the two
resonant frequencies may be overlapped or split depending on
the geometrical conditions of the structure, as shown in Fig. 1.
With these ideas in mind, more complex and high-performance
filter structures can be conceived [2].

In Section Il, a first straightforward application of the
involved inverter principles is presented, resulting in both
microstrip and suspended stripline (SSL) filters. The results
of these filters demonstrate the feasibility of this concept;
they suffer, however, from performance limitations in stopband
behavior. Therefore, three different approaches are devel oped,
investigated, and tested successfully in Section 11l to achieve
a broad-band rejection above the passband.

Il. NOVEL DESIGN OF BROAD-BAND FILTERS

Based on the considerations given above, a five-pole
resonator filter, as shown in Fig. 2, can be designed. Four
impedance steps—now with different geometries—and two
coupling sections form six inverters, thus, this resonator
filter consists of four quarter-wavelength sections and one
low-impedance half-wavelength transmission line. The
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Fig. 2. Concept of the novel five-resonator filter.

quarter-wave resonators are part of the coupled-line sections;
if the coupling length is close to a quarter wavelength, the
remaining lengths get very small, and the filter becomes very
compact.

Assuming 50-2 external feeding lines and a minimum
linewidth of 0.1 mm on a soft substrate of 0.635-mm thickness
and a dielectric constant of 10.8, as used here (yielding a char-
acteristic impedance of around 100 £2), a minimum coupling
coefficient |S21| of approximately —0.5 dB is possible for
the impedance step forming the first inverter; therefore, only
broad-band-featured filters are expected.

Preliminary designs of both microstrip and SSL filters were
done on the basis of standard filter design [3] using transmis-
sion-line resonators coupled by series capacitances or shunt in-
ductances as inverters. The discontinuities of thefilter structure
under investigation—impedance steps and coupling sections
now acting as inverters—then are selected such that they ex-
hibit the same | S5 | as the respective origina inverter circuits.
Finally, the resonator lengths are adjusted to compensate for
phase deviations of the new inverters compared to the origina
ones. For filters of very wide bandwidths and frequency-de-
pendent inverter properties, this procedure provides a limited
design accuracy only; therefore, it is followed by a number of
optimization steps using either an in-house method of moments
[4], [5] and/or a commercia simulator.t

The layout of a first microstrip filter fabricated on a
0.635-mm-thick substrate with a dielectric constant of 10.8 is
given at thetop of Fig. 3. The narrow coupled lines have awidth
of 0.125 mm, separated by a gap of 0.125 mm, while the center
resonator has a length of 8.17 mm and a width of 4.56 mm
(equivalent to a line impedance of 12.6 ). Conseguently,
the coupled-line sections are critical areas for fabrication. At
the bottom of Fig. 3, theoretical and experimental scattering
parameters of the filter are plotted versus frequency, and a de-
tailed view on experimental passband insertion loss and group
delay is presented in Fig. 4. Center frequency is approximately
6.0 GHz, bandwidth is approximately 3.0 GHz (50%). The
theoretical return-loss curves clearly demonstrate the five-pole
resonator performance of the filter. Measurements were done
using athru-reflect line (TRL) calibration with reference planes
on the microstrip level. The experimental insertion loss agrees
very well with theoretical prediction.

Measured insertion-loss amounts to 0.254+-0.1 dB over the
passband between 4.5-7 GHz. Some discrepancies between
theory and experiment can be stated for the return loss. Met-

1SONNET, ver. 6.0a, Sonnet Software Inc., Liverpool, NY, 1999.
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Fig. 3. Layout, theoretical, and experimental results of afirst microstrip filter
(width of input lines: 0.62 mm, widths of coupled lines: 0.125 mm, coupling
slot: 0.125 mm, coupling length: 4.69 mm, length of first resonator: 5.33 mm,
length of second resonator: 5.13 mm, width of central resonator: 4.56 mm,
length of central resonator: 8.17 mm, substrate material RT Duroid 6010,
substrate thickness: 0.635 mm, dielectric constant 10.8).
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Fig. 4. Experimental insertion loss and group delay of the microstrip filter
within the passband.

allization thickness (important in the coupling sections) is not
included in the computation, and the small size of the filter
structures and the extremely low return loss are very sensitive
with respect to computation accuracy (discretization of the
structure) and fabrication tolerances. For such broad-band
filters, group-delay variations are also of great importance.
Within the passband, maximum variation of group delay is
below 0.2 ns (Fig. 4). With a length of only approximately
20 mm and awidth of 5 mm, thisfive-resonator microstrip filter
is extremely compact compared to a free-space wavelength of
50 mm at center frequency.
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Fig.5. Layout, theoretical, and experimental results of an SSL filter (width of
input lines: 4 mm, widths of coupled lines: 0.75 mm, coupling length: 0.5 mm,
length of first resonator: 9.75 mm, length of second resonator: 9.25 mm, width
of central resonator: 4.5 mm, length of central resonator: 17.25 mm, substrate
material RT Duroid 5880, substrate thickness: 0.254 mm, mounted in a channel
5mm x 5 mm).

As an alternative, a similar filter was realized using an SSL.
SSL is well suited for filter design due to its low loss and a
possibility of including broadside coupling [6]. As substrate
meaterial, a Duroid substrate of 0.254-mm thickness and a di-
electric constant of 2.2 was chosen, mounted in a channel of
5 mm x5 mm. For the coupled-line sections, a strip width of as
wide as 0.75 mm yields a line impedance of as high as 150 €2,
thus lower coupling coefficients compared to the former ex-
ample can be realized. Together with broadside coupling with
itswide range of coupling coefficients, thisleadsto much more
relaxed requirements for computation accuracy and fabrication
tolerances. Filter layout and theoretical, aswell asexperimental,
results for this filter are given in Fig. 5. Center frequency is
again 6 GHz, bandwidth is approximately 2.5 GHz. The inser-
tion loss over the passband is better than 0.5 dB; in contrast to
the microstrip filter, however, thisincludesthe transitionsto the
coaxial line test equipment. With thisfilter, an excellent agree-
ment between theory and experiment for both insertion and re-
turn loss can be observed.

[11. IMPROVED FILTER DESIGN

One major disadvantage of these two filters is the spurious
response at the first harmonic frequency of the passhand caused
by a full-wavelength resonance of the central resonator. This
spurious response, however, can be removed in two ways, as
will be shown in the following. The first method reduces the
excitation of the full-wavelength resonance by connecting the
center resonator at points where the voltage of this resonance
is a a minimum. This structure will be demonstrated by two
examples of microstrip filters. In the second approach, the filter

e

Fig. 6. Layout of the microstrip filter with the central resonator connected at
the voltage minima for the full —wavelength resonance (width of input line:
0.56 mm, coupling length: 4.5 mm, length of first resonator: 5.19 mm, length
of second resonator: 4.88 mm, width of central resonator: 2.06 mm, length of
central resonator: 7.75 mm, remaining data as with Fig. 3).
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Fig. 7. Theoretical and experimental return and insertion loss of the filter
according to Fig. 6 (dashed lines: theory, dashed—dotted lines: experiment
without absorbers, solid lines: experiment with absorbers at the substrate
edges).

is extended to six resonators with a quarter-wavelength so that
no half-wavelength resonance can occur.

If atransmission-line resonator isfed at aquarter of itslength
away from the ends, the fundamental hal f-wavel ength resonance
is still excited, but for the full-wavelength resonance, the feed
point is at a voltage zero so that the resonator is not coupled at
this frequency. This is equivalent to the fact that, at twice the
center frequency of thefilter, the open ends of the resonator are
transformed into short circuits at the feeding points, resulting in
transmission zeros at the respective frequency. Therefore, this
technique can be applied to suppress thefirst spurious passband
of the microstrip filter (Fig. 6). Thistechnique, however, has no
major influence on the next spurious passband at three timesthe
center frequency (part of this can be seen at the upper frequency
limit of Fig. 7).

To alow an effective design of thisfilter, some quasi-lumped
elements were added to the first (and last) impedance steps. In
thisway, very dight adjustments were possible without refining
the grid in the field solver. (Similar techniques were applied to
the six-resonator SSL filter presented later on.) No optimization
effort, however, was made to again demonstrate the five-pole
filter behavior. Theoretical and experimental results are plotted
in Fig. 7. Center frequency is 6 GHz, bandwidth is 2.6 GHz. A
good agreement can be seen, except for the stopband attenuation
given by the dashed—dotted line. A detailed analysis revealed
that the coax-to-microstrip transition launched some surface
waves coupling input and output ports directly. Placing some
absorbing material to the edges of the substrate, these surface
waves could be suppressed, and the solid line for the insertion
loss in Fig. 7 is obtained. Passband insertion loss is dlightly
higher than that of the first filter because the tapped coupling
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Fig. 8. Photograph of the folded microstrip filter (coupling length: 4.63 mm,
length of first resonator: 5.25 mm, length of second resonator: 4.88 mm, height
of central resonator: 4.5 mm, lateral dimension of central resonator: 4.25 mm,
slot in central resonator: 3.25 mm x 0.25 mm, al other dataasin Fig. 3).
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Fig. 9. Theoretical and experimental filter characteristics of the folded
microstrip filter.

of the center resonator results in an increased radiation of
the center half-wavelength resonator, as compared to the filter
shown in Fig. 3. In addition, the filter now requires more
substrate surface.

To achieve acompact size of thefilter, the central resonator is
folded. In addition, the electric-field lines at the ends of the res-
onator have opposite directions leading to a reduced radiation
in thisway. Once again, during the optimization of thisfilter, no
effort was taken to reproduce the five-pole bandpass behavior.
A photograph of thisfilter is shown in Fig. 8. With alength of
approximately 15 mm only, this filter is even smaller than that
first presented. A very good agreement is found between theory
and experiment (Fig. 9). In the stopband region, again, some
surface waves launched by the transitions to the coaxial mea
surement system created some problems; these, however, were
reduced by absorbing material placed at the substrate edges (ap-
proximately 34 mm away from the filter). Center frequency is
closeto 6 GHz with abandwidth of 2.8 GHz. Passband insertion
loss amounts to 0.2 dB only, and a measured stopband attenu-
ation of more than 30 dB can be found in the frequency range
from 9.5 to 14.5 GHz.

Toreveal the nature of theinsertion loss peak around 13 GHz,
current density was calculated at this frequency and compared
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Fig. 10. Resonance behavior of the central folded microstrip resonator.

to that at center frequency of the filter. At the outer edge of the
two-dimensional center resonator structure, anincreased current
density with 1.5 wavelength behavior is observed at 13.1 GHz,
while at 6 GHz, the current density concentrates around the slot
area of the resonator. In addition, resonance frequencies of this
resonator were cal culated separately using aweak gap coupling,
resulting in resonances at 6.1, 9.7, 13.1, 18.25, and 19.5 GHz
(Fig. 10). Thefirst resonance frequency is that intended for the
filter passhand, the second oneis suppressed due to the specific
selection of the feeding point, and the remaining ones contribute
to the peak at 13.1 GHz and the next higher order passband
above 16 GHz.

For an alternative approach, a shunt inductance as an addi-
tional inverter is placed in the center of the former half-wave-
length resonator of the filter. This inductance is realized by a
(very short) short-circuited shunt stub providing a rather low
impedance, compared to the quite high impedance of the next
inverters (impedance steps from low to high transmission-line
impedances). Thus, the resulting two new central resonators
become quarter-wavelength resonators, and the next spurious
response occurs at three times the passband frequency. This
design is shown at the example of the SSL filter. A generalized
block diagram and the layout of such afilter based onan SSL is
shown in Fig. 11. Basicaly, this type of filter can be regarded
as a half-wavelength impedance step filter [3] where series
capacitances are introduced in the center of the high-impedance
lines and shunt inductances in the low-impedance lines. In
this way, the order of the filters is doubled, half-wavelength
resonators are turned into twice the number of quarter-wave-
length resonators within the same or even reduced space (when
the capacitances are realized by side coupling) and, what is
very important, the spurious response at twice the passband
frequency is removed.

The SSL design of such afilter has been doneincluding opti-
mization based on SONNET. The shunt inductancein the center
simply was realized by (symmetrical) shorting sections toward
the edges of the mounting channel. First experimental results
(plotted as the solid line in Fig. 12) were disappointing; but
the problem was recognized and finally fixed. To reduce the
computational effort and optimization time, the filter was de-
signed with asubstratein an ideal quadratic waveguide channel,
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Fig. 11. Equivalent circuit and basic layout of a modified six-resonator SSL
filter (width of input lines: 4 mm, width of first resonator: 1 mm, length of
first resonator: 10 mm, width of second resonator: 0.75 mm, length of second
resonator 2: 9.25 mm, coupling length: 0.75 mm, width of central resonator:
4.5 mm, length of central resonator: 15.5 mm, width of shorting strips 0.5 mm).
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Fig. 12. Return and insertion loss of the six-resonator SSL filter including
the effect of the clamping grooves (solid lines: experiment, dashed line: theory
approximating the clamping grooves by longitudinal via metallization).

as shown in Fig. 13 (top left). In practice, however, the sub-
strate has to be clamped in grooves at the side of the waveguide
channel (Fig. 13, topright). Consequently, the shunt inductances
at the central resonator exhibit an increased inductance.

An approximate calculation of this effect was done using a
wider channel for the computation and introducing longitudinal
viawalls at the sides. The return loss calculated with this ap-
proach isincluded in Fig. 12 as a dotted line. In principle, the
measured performance is approximated reasonably well. Fol-
lowing this, the substrate was cut away in the clamping area
close to the shunt inductances, and the short circuit was realized
connecting bond ribbons around the substrate edges at exactly
the positions as the short circuits were assumed for the original
design. The measured results are plotted in Fig. 14, compared
to the design curves. Center frequency is 6 GHz, bandwidth
amountsto 3.25 GHz. An excellent agreement can be stated be-
tween theory and experiment. No spurious response remains at

Cross section for Real cross
theoretical section
calculation

Bond ribbons for
short circuits

Fig.13. Different crosssectionsof the SSL filter and placement of bond ribbon
vias.
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Fig. 14. Theoretical and experimental results of amodified six-resonator SSL
filter.

around 12 GHz, and the filter edges are steeper than before due
to the additional resonator. Furthermore, this six-pole resonator
filter is even smaller than its five-pole counterpart, as shown in
Fig. 5.

IV. CONCLUSION

A new concept for wide-bandwidth filters has been presented.
Alternatively, impedance steps and coupled-line sections are
used asinverters. Asaconsequence, afive-resonator filter of this
type includes one half-wavelength and four quarter-wavelength
resonators, leading to avery compact filter. In asecond step, the
spurious passband response at twice the center frequency dueto
the half-wavelength resonator is removed either by contacting
the center resonator at field minimafor the harmonic resonance
or by introducing a shunt inductance in its center, increasing
the filter degree by one, and dividing the center resonator into
two quarter-wavelength resonators. Design and results of four
five-polefilters and one six-pole resonator filter have been pre-
sented. An excellent agreement between design and measure-
ment, in conjunction with low loss and very compact size, is
observed for the given examples.
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